Getting the Skinny on Phosphorus

Brian Whipker

Department of Horticultural Science

Topic Outline

Not discussed

Topic Outline

What key nutritional factors influence plant growth?

Understanding Fertilizer Rates

5075100200300400Gerbera growth as fertilization rate increases
(in ppm N)

K. Yeon Jeong, B. Whipker, I. McCall, and J. Frantz

- While N rate and type (nitrate vs ammoniacal) affect plant growth, P fertilization rate has a significant impact on internode stretch.
 - Paul Nelson et al., 1992
 - http://www.gpnmag.com/article/what-really-causes-stretch/

Phosphorus Nutrition: Maximum Growth

Phosphate vs. Compactness

P_2O_5 as a % of N in post-plant fertilizer

0%

 $P_2O_5 = 50\% \text{ of N}$ 15% 7.5% (e.g. 20-10-20) (13-2-13)

Phosphorus Nutrition: Maximum Growth

- Low P nutrition limits internode stretch, keeping plants compact
 - Easy to implement for short-term crops like plugs
- Current research recommends P rates of 0.01 to 10 ppm for growth control of finished plants

Phosphorus Nutrition: Maximum Growth

- 0.01 ppm P is extremely low!
- Many studies use non-commercial substrates
 - P buffered clay
- Not necessarily applicable to floriculture production

Phosphorus Deficiency: Lower Leaf Purpling

Phosphorus Deficiency: Lower Leaf Olive Green Spots

Phosphorus Nutrition: Maximum Growth

- Common fertilizers provide P as phosphate (P₂O₅)
 - Research reported here is in P, so you need to know the conversions

 $P \times 2.33 = phosphate (P_2O_5)$

Phosphate $(P_2O_5) \times 0.43 = P$

Example 20-10-20 @ 200 ppm N provides:

100 ppm
$$P_2O_5 = 43$$
 ppm P

Phosphorus Supplied by Common Fertilizers

Phosphorus Nutrition: Maximum Growth

- The Challenge: Soilless substrates have a low P holding capacity, so it is easy to go too low
 - This poses some questions

Questions

Using commercial floriculture production practices:

What P rates maximize growth?

- OR -

What P rates control growth?

What Phosphorus Rates Control Growth?

Experiment

- Grew several species with range of P rates holding other nutrients constant
 - Used 0 80 ppm
- Measured height, diameter, and dry mass
 - Determined growth index

Growth Index = $\frac{\text{height} + \text{diameter} + \text{dry mass}}{3}$

Petunia 'Surprise Sky Blue'

Petunia 'Surprise Sky Blue'

Petunia Foliar P Concentrations

- 5 15 ppm P resulted in maximum growth index values
 - 2.5 ppm P or less resulted in deficiency symptoms
- 3 5 ppm P provided growth control

Plant Species 'Cultivar'	Phosphorus Concentration
	$(mg \cdot L^{-1})$
Alternanthera brasiliana	
'Brazilian Red'	5.50
Angelonia angustifolia	
'Sungelonia Blue'	
'Sungelonia White'	7.27
Capsicum annuum	
'Tango Red'	13.1
Catharanthus roseus	
'Cora Burgundy'	6.74
'Pacifica XP Blush'	6.43
Impatiens hawkeri	
'Pure Beauty Red on Pin	nk' 12.4
'Tamarinda Dark Red'	
Petunia atkinsiana	
'Potunia Neon'	
'Surprise Sky Blue'	8.72

Phosphorus Supplied by Common Fertilizers

Phosphorus Nutrition: Growth Control

- Plant growth retardants (PGRs) are most commonly used method in floriculture
- A concern with PGRs is that they are not labeled for all crops
 - This is especially true for vegetable growers who are limited on chemicals options
- P restriction is an alternative way to control growth in greenhouse crops

Experiment

- Grew New Guinea impatiens with P rates of 0 20 ppm
 - After several weeks, half were sprayed with paclobutrazol
- Measured height, diameter, and dry mass
 - Determined growth index and compared maximum height of PGR treated plants with untreated plants

'Tamarinda Dark Red' New Guinea Impatiens

<u>Paclobutrazol</u>

<u>No PGR</u>

0 2.5 5 10 20 Phosphorus Rate (ppm)

'Tamarinda Dark Red' New Guinea Impatiens

20 ppm P

5 ppm P

'Tamarinda Dark Red' Height Control

Conclusions

- Depending on species, 5 15 ppm P resulted in maximum growth
- 3 5 ppm P resulted in similar height for non-PGR treated plants as plants receiving 20 ppm P and a PGR application
- Low P fertilization can successfully control growth without negative issues of P deficiency symptoms

Topic Outline

- Red leaf color is a desirable trait found in several ornamental species
 - Zonal geraniums
 - Alternanthera
 - Iresine
 - Coleus

- What does P nutrition have to do with coloration?
- P deficiency increases red leaf pigmentation
 - Increase in anthocyanins and betacyanins

- <u>Anthocyanins</u>: Common red pigment found in plants such as zonal geraniums and coleus
 - Relationship with P nutrition well established
- <u>Betacyanins</u>: Less common red pigment found in amaranths such as alternanthera, and some other species such as carnations
 - Relationship with P nutrition not previously established

- <u>Chlorophyll</u>: Pigment responsible for green coloration and photosynthesis
 - Low P stress limits chlorophyll production

Public Domain, https://commons.wikimedia.org/wiki/File:Chlorophyll_d_structure.svg

- Several plant pigments affected by P nutrition
 - These pigments determine what color the plant looks like
 - Color is a significant driver of consumer preferences

Question:

Can low P fertilization enhance foliar coloration in red leafed species?

Overall Conclusions

- From these experiments, growers can obtain numerous benefits from low P fertilization
 - Growth Control (3 5 ppm P)
 - Enhanced Coloration
- Due to poor nutrient holding capacity of soilless substrates, P must be supplied to avoid deficiency
 - Symptom development in 2 3 weeks
 - For most species, 5 10 ppm P will prevent symptom development

Questions?

Tobacco Foundation

