

# Lighting Plugs and Cuttings – Regimes & Lamps

#### Erik Runkle Professor of Horticulture

![](_page_0_Picture_3.jpeg)

## Acknowledgments

- Former graduate students Roberto Lopez, Brian
   Poel, and Lee Ann Pramuk; technican Nate DuRussel
- Horticulture and lighting companies and granting agencies that supported this research, especially:

![](_page_1_Picture_3.jpeg)

#### Horticultural Lighting Applications

|                          | Photoperiodic                               |
|--------------------------|---------------------------------------------|
| Location                 | Greenhouses,<br>sometimes outdoors          |
| Use or<br>objective      | Promote or inhibit<br>flowering             |
| Plants<br>targeted       | Crops that flower in response to day length |
| Typical<br>intensity     | 1–2 µmol·m <sup>-2</sup> ·s <sup>-1</sup>   |
| Typical lamps<br>used    | Incandescent or<br>R ± FR LEDs              |
| When used                | During the night from<br>Sept. to Mar.      |
| Hours used<br>per day    | Usually up to 4                             |
| Control of<br>morphology | Little to moderate                          |

#### Horticultural Lighting Applications

|                       | Photoperiodic                               | Supplemental                                                           |
|-----------------------|---------------------------------------------|------------------------------------------------------------------------|
| Location              | Greenhouses,<br>sometimes outdoors          | Greenhouses                                                            |
| Use or<br>objective   | Promote or inhibit<br>flowering             | Increase growth,<br>harvestable yield, and<br>plant quality attributes |
| Plants<br>targeted    | Crops that flower in response to day length | Young plants and high-<br>value crops                                  |
| Typical<br>intensity  | 1–2 µmol·m <sup>-2</sup> ·s <sup>-1</sup>   | 50–100 µmol·m <sup>-2</sup> ·s <sup>-1</sup><br>(2X for vegetables)    |
| Typical lamps<br>used | Incandescent or<br>R ± FR LEDs              | HPS or<br>R, B, W LEDs                                                 |
| When used             | During the night from<br>Sept. to Mar.      | At night and on cloudy days from fall to spring                        |
| Hours used<br>per day | Usually up to 4                             | Usually up to 20                                                       |
| Control of morphology | Little to moderate                          | Little to none                                                         |

## Horticultural Lighting Applications

|                       | Photoperiodic                               | Supplemental                                                           | Sole-Source                                                         |
|-----------------------|---------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|
| Location              | Greenhouses,<br>sometimes outdoors          | Greenhouses                                                            | Indoors (vertical farms)                                            |
| Use or<br>objective   | Promote or inhibit<br>flowering             | Increase growth,<br>harvestable yield, and<br>plant quality attributes | Pronounced regulation<br>of plant growth;<br>consistency of product |
| Plants<br>targeted    | Crops that flower in response to day length | Young plants and high-<br>value crops                                  | Leafy greens, herbs,<br>and young plants                            |
| Typical<br>intensity  | 1–2 µmol·m <sup>-2</sup> ·s <sup>-1</sup>   | 50–100 µmol·m <sup>-2</sup> ·s <sup>-1</sup><br>(2X for vegetables)    | 125–175 µmol·m <sup>-2</sup> ·s <sup>-1</sup>                       |
| Typical lamps<br>used | Incandescent or<br>R ± FR LEDs              | HPS or<br>R, B, W LEDs                                                 | Fluorescent or<br>R, B, W LEDs                                      |
| When used             | During the night from<br>Sept. to Mar.      | At night and on cloudy days from fall to spring                        | Every day                                                           |
| Hours used<br>per day | Usually up to 4                             | Usually up to 20                                                       | 12–24                                                               |
| Control of morphology | Little to moderate                          | Little to none                                                         | Strong                                                              |

## Daily Light Integral (DLI)

- The DLI is the total amount of photosynthetic light (400-700 nm) that is received per square meter each day
- It is an "accumulation measurement" and can not be measured at one point in time
- Unit: mol·m<sup>-2</sup>·d<sup>-1</sup> or moles/day
- Conversion for sunlight:  $1 \text{ MJ} = 2.04 \text{ mol} \cdot \text{m}^{-2} \cdot \text{d}^{-1}$

#### General Plant Responses to DLI

- Leaves (smaller and thicker)
- Branching (increased)
- Stem diameter (increased)
- Root growth (increased)
- Time to flower (faster, due partly to temperature)
- Flowers (more and larger)
- Fruit (more and larger)

![](_page_6_Picture_8.jpeg)

#### New Guinea Impatiens

#### Stock Plants

#### Average DLI (mol·m<sup>-2</sup>·d<sup>-1</sup>): 6.1 10.9 17.2

![](_page_7_Picture_3.jpeg)

New Guinea impatiens 'Harmony White' Photo taken after 16 days of propagation

Average DLI (mol·m<sup>-2</sup>·d<sup>-1</sup>): 4.7 6.3 1.3 2.1 4.0 10.8 Sunlight Sunlight + HPS

Root dry mass (mg)8.014.530.035.548.555.5

Argyranthemum 'Madiera Cherry Red' Photo taken after 21 days of propagation

![](_page_9_Figure_1.jpeg)

14.9 22.6 27.1 48.0 40.1 45.6 56.0 84.0

#### Salvia 'Vista Red'

#### 22 Days from seed sow at 23 °C Grown under an average DLI of: (mol·m<sup>-2</sup>·d<sup>-1</sup>) 6 10 16

![](_page_10_Picture_2.jpeg)

#### Increase in DLI $\rightarrow$ Earlier Flowering

Celosia 'Gloria Mix' Common Environment: 23 °C and DLI of 8.5 mol·m<sup>-2</sup>·d<sup>-1</sup>

![](_page_11_Figure_2.jpeg)

2 8 10 12 14 16 4

Daily light integral (mol·m<sup>-2</sup>·d<sup>-1</sup>) during seeding stage

#### Increase in DLI $\rightarrow$ Earlier Flowering

#### Celosia 'Gloria Mix' Common Environment: 23 °C and DLI of 8.5 mol·m<sup>-2</sup>·d<sup>-1</sup>

![](_page_12_Figure_2.jpeg)

Daily light integral (mol·m<sup>-2</sup>·d<sup>-1</sup>) during seeding stage

Question: At what stage(s) of seedling growth does supplemental lighting provide the greatest benefit?

## Lighting Treatments

- The seedling stage was divided into thirds, each lasting 9 or 11 days
- Plugs were lighted for 1/3 or 2/3 of the plug stage, not at all, or during the entire period.

![](_page_14_Figure_3.jpeg)

#### Petunia 'Madness Red'

27 days after seed sow at 20 °C

= Low-intensity lighting (3  $\mu$ mol·m<sup>-2</sup>·s<sup>-1</sup>) = High-intensity lighting (90  $\mu$ mol·m<sup>-2</sup>·s<sup>-1</sup>)

![](_page_15_Picture_3.jpeg)

#### Each or represents 9 days

#### Petunia 'Madness Red'

![](_page_16_Figure_1.jpeg)

#### Supplemental lighting treatment

#### Pansy 'Delta Premium Yellow'

33 days after seed sow at 20 °C

= Low-intensity lighting (3  $\mu$ mol·m<sup>-2</sup>·s<sup>-1</sup>) = High-intensity lighting (90  $\mu$ mol·m<sup>-2</sup>·s<sup>-1</sup>)

![](_page_17_Picture_3.jpeg)

Each or represents 11 days

#### Pansy 'Delta Premium Yellow'

#### 61 days after seed sow at 20 °C

![](_page_18_Figure_2.jpeg)

![](_page_18_Picture_3.jpeg)

 13%
 13%
 25%
 32%
 44%
 69%
 75%

 Flowering percentage

## Supplemental Greenhouse Lighting

![](_page_19_Picture_1.jpeg)

#### Tomato 'Supersweet'

Greenhouse supplemental lighting from 6am to 10pm at a PPFD (in µmol·m<sup>-2</sup>·s<sup>-1</sup>) of:

![](_page_20_Picture_2.jpeg)

HPS = high-pressure sodium lamps. B=blue (peak=453 nm), R=red (peak=660 nm), G=green from white (peak=560 nm) LEDs. Values after each waveband indicate their percentage of the total PPFD in each treatment.

Photo taken after 21 days at 20 °C, DLI = 7.7 mol·m<sup>-2</sup>·d<sup>-1</sup>

#### Petunia 'Wave Misty Lilac'

Greenhouse supplemental lighting from 6am to 10pm at a PPFD (in µmol·m<sup>-2</sup>·s<sup>-1</sup>) of:

![](_page_21_Picture_2.jpeg)

HPS = high-pressure sodium lamps. B=blue (peak=453 nm), R=red (peak=660 nm), G=green from white (peak=560 nm) LEDs. Values after each waveband indicate their percentage of the total PPFD in each treatment.

Photo taken after 37 days at 20 °C, DLI =  $8.2 \text{ mol}\cdot\text{m}^{-2}\cdot\text{d}^{-1}$ 

#### Petunia 'Wave Misty Lilac'

Greenhouse supplemental lighting of seedlings from 6am to 10pm (for 37 days) at a PPFD (in µmol·m<sup>-2</sup>·s<sup>-1</sup>) of: 90 10

![](_page_22_Picture_2.jpeg)

HPS = high-pressure sodium lamps. B=blue (peak=453 nm), R=red (peak=660 nm), G=green from white (peak=560 nm) LEDs. Values after each waveband indicate their percentage of the total PPFD in each treatment.

Photo taken after 25 days after transplant at 20 °C

#### Petunia 'Ramblin Peach Glo'

23 °C with ambient DLI = 4 to 5 mol·m<sup>-2</sup>·d<sup>-1</sup> Supplemental lighting fixture and intensity ( $\mu$ mol·m<sup>-2</sup>·s<sup>-1</sup>):

![](_page_23_Figure_2.jpeg)

#### Impatiens 'Accent Premium Salmon'

23 °C with ambient DLI = 4 to 5 mol·m<sup>-2</sup>·d<sup>-1</sup> Supplemental lighting fixture and intensity ( $\mu$ mol·m<sup>-2</sup>·s<sup>-1</sup>):

|         | H           | PS            | R+W         | LED           |
|---------|-------------|---------------|-------------|---------------|
| Control | Cont.<br>70 | Thresh.<br>90 | Cont.<br>70 | Thresh.<br>90 |
|         |             |               |             |               |

Allison Hurt and Roberto Lopez, MSU

![](_page_25_Picture_0.jpeg)

![](_page_26_Picture_0.jpeg)

### Supplemental Light Intensities

- Greatest benefit when the ambient DLI is less than 8 mol·m<sup>-2</sup>·d<sup>-1</sup> (4 MJ·d<sup>-1</sup>)
- For young plants, deliver 50 to 75 µmol·m<sup>-2</sup>·s<sup>-1</sup> at the growing surface

| Hours per |     | PAR inter    | nsity (µm  | ol·m <sup>-2</sup> ·s <sup>-1</sup> ) |      |
|-----------|-----|--------------|------------|---------------------------------------|------|
| day       | 50  | 75           | 100        | 150                                   | 200  |
|           | Da  | aily light i | ntegral (r | nol·m <sup>-2</sup> ·d                | -1)  |
| 8         | 1.4 | 2.2          | 2.9        | 4.3                                   | 5.8  |
| 12        | 2.2 | 3.2          | 4.3        | 6.5                                   | 8.6  |
| 16        | 2.9 | 4.3          | 5.8        | 8.6                                   | 11.5 |
| 20        | 3.6 | 5.4          | 7.2        | 10.8                                  | 14.4 |

## Lamp Type Considerations

- Greenhouse dimensions, especially hanging height or position
- Reliability: Use trusted brands with warrantees
- Fixture longevity and maintenance
- Light spectrum (for plants and people)
- Hours of operation
- Uniformity of intensity

## Lamp Type Considerations

- Review the lighting map and consider the uniformity of the light intensity
- A 10-20% variation in light intensity is generally acceptable

![](_page_29_Figure_3.jpeg)

## Lamp Type Considerations

- Electrical supply available
- Cost of electricity
- Plants under HPS are typically 1-2 °C warmer than under LEDs
- Purchase and installation costs (including required accessories), availability of utility rebates, etc.
- Lamp efficacy: Photons per joule (µmol/J)

## Fixture Efficacy (Efficiency)

- The efficacy of a lamp refers to the number of photons of light emitted per amount of energy consumed
- The total output of a lamp is usually measured in an integrating sphere and requires expertise to operate

![](_page_31_Picture_3.jpeg)

## Examples of Fixture Efficacy

|                                     | Measured     | Photosynthetic<br>photon flux | Photosynthetic<br>photon efficacy |
|-------------------------------------|--------------|-------------------------------|-----------------------------------|
| Fixture model                       | power (W)    | (µmol⋅s <sup>−1</sup> )       | (µmol·J <sup>−1</sup> )           |
| High-                               | pressure sod | ium                           |                                   |
| Sunlight Supply Sun Star (magnetic) | 443          | 416                           | 0.9                               |
| P.L. Light SON-T PIA (electronic)   | 690          | 926                           | 1.3                               |
| Gavita Pro 1000e, (electronic; DE)  | 1,069        | 1,837                         | 1.7                               |
|                                     | LEDs         |                               |                                   |
| Heliospectra LX601C                 | 595          | 673                           | 1.1                               |
| Hubbell Cultivaire                  | 358          | 736                           | 2.1                               |
| Illumitex PowerHarvest W            | 268          | 475                           | 1.8                               |
| Lumigrow Pro 325e                   | 300          | 540                           | 1.8                               |
| Philips (Signify) GreenPower DR/W   | 195          | 504                           | 2.6                               |
| P.L. Light HortiLED TOP Full Spec.  | 330          | 696                           | 2.1                               |
| P.L. Light HortiLED TOP Red-Blue    | 313          | 798                           | 2.6                               |

DE = Double ended

Sources: Nelson and Bugbee, 2014, 2017; Leora Radetsky, RPI, 2018.

#### LEDs vs. HPS: A Matter of Economics

| General inputs                             |                  |         |
|--------------------------------------------|------------------|---------|
| Electricity price (\$/kWh)                 | 0.12             |         |
| Hours of lamp operation per year           | 2,500            |         |
| HPS bulb replacement cost                  | 40               |         |
| Expected HPS bulb replacement (hours)      | 12,000           |         |
|                                            |                  |         |
| Lamp purchase comparisons                  | HPS              | LED     |
| Number of fixtures (lamps)                 | 288              | 340     |
| Cost per fixture (\$)                      | 340              | 710     |
| Total fixture cost (\$)                    | 97,920           | 241,400 |
| Additional cost for accessories            | 0                | 0       |
| Additional cost for added electricity      | 60,000           | 0       |
| Energy rebate                              | 0                | 18,000  |
| Total purchase cost (\$)                   | 157,920          | 223,400 |
|                                            |                  |         |
| Lamp operation comparisons                 | HPS              | LED     |
| Energy consumption (watts per lamp)        | 630              | 320     |
| Total power draw (kW)                      | 181              | 109     |
| Electricity cost per year (\$)             | 54,432           | 32,640  |
| HPS bulb replacement cost (\$)             | 2,400            |         |
| Total operating cost per year (\$)         | 56,832           | 32,640  |
|                                            |                  |         |
| Approximate return on investment (years)   |                  | 2.7     |
| (Excludes interest, depreciation, opportun | nity cost, etc.) |         |
|                                            |                  |         |

#### www.canr.msu.edu/floriculture

![](_page_34_Picture_1.jpeg)

MSU Extension Floriculture & Greenhouse Crop Production

|--|

Q

![](_page_34_Picture_4.jpeg)

/ Resources /

#### Light Management in Greenhouses & Controlled Environments

Electric lighting is used in greenhouses to regulate the photoperiod to control flowering, or to increase growth to increase crop quality and yield. It is also used for sole-source lighting of plants produced indoors. A few summary articles are below, followed by more in-depth articles on specific topics.

- Light Management in Controlled Environments, a book edited by Roberto Lopez and Erik Runkle, contains 18 chapters on the subject of light in horticulture. It presents the underlying biology of how light influences plant growth and development of specialty crops, especially those grown in greenhouses and controlled-environment growth rooms. Over 20 leading plant scientists from 16 different universities/institutes/companies discuss technology options for shade and lighting, including the latest developments in greenhouse and sole-source lighting.
- LED Lighting for Urban Agriculture, a book, edited by Toyoki Kozai, Kazuhiro Fujiwara, and Erik Runkle, focuses on light-emitting diode (LED) lighting, mainly for the

#### Resources

Annual Bedding Plants Greenhouse Energy Greenhouse Pest Management Greenhouse Temperature Management Height Management of Ornamentals Herbaceous Perennials Leafy Greens & Edibles Light Management in Greenhouses & Controlled Environments Marketing & Economics of Ornamentals Potted Flowering Plants Root-zone Management Young Plant Production

## More Plant Lighting Information

- Book contains 18 chapters with 20 chapter authors, edited by Lopez and Runkle
- Targeted audience is growers, lighting reps, and college students
- Available in print and digital versions through Amazon

![](_page_35_Picture_4.jpeg)